Hudson River PCBs Site

Engineering Performance Standards For Dredging

Presentation to Peer Review Panel

Malcolm Pirnie, Inc.
TAMS, an EarthTech Company
October 15-16, 2003

Introduction

Bruce Fidler, PE Project Manager

Introduction to the Standards

- Mission
- Approach
- Document Tour

The Mission

Address public concerns about dredging by developing standards that:

- Will be enforceable
- Promote accountability
- Are based on objective criteria
- Ensure cleanup meets ROD objectives

Remedial Objectives

- Reduce risks and hazards to people eating fish
- Reduce risks to ecological receptors
- Reduce PCB levels in surface water
- Reduce bio-available PCBs
- Minimize long-term downstream transport of PCBs

Performance Standards Goals

- Protect Public Water Supplies
- Protect Downstream Water Quality
- Promote Fish Recovery
- Achieve Residual ~ 1 mg/kg Tri+ PCBs
- Keep Dredging Program on Schedule
- Achieve Long-Term Remedy Benefits

Three Required Standards

- Resuspension
- Residuals
- Productivity

Challenges

- Domain of Standards vs. Design
- Appropriate Level of Prescriptiveness
- Simplicity vs. Comprehensiveness and Flexibility
- Interrelationships Among Standards
- Competing Public Concerns
- Popular Misconceptions

Public Concerns

- "Do more harm than good"
 - Remedy should be more aggressive
- Duration much longer than stated
 - Protection over schedule
- River navigation will suffer
 - Methods should be dictated
- Residents' quality of life will deteriorate
 - Drinking water is at risk

Development Philosophy

Flexible Standards...

Protection

Production

Natural Tension

Expeditious dredging leads to more rapid resource recovery (productivity)

Controlling dredging releases avoids impacts to the resource (resuspension)

Certifying post-dredging concentrations achieves compliance with ROD objective (residuals)

For Each Standard

- Establish solid technical basis
- Test to ensure
 - Project objectives met
 - Practicable application
 - Not overly burdensome
 - Encourage quality management

Project Team

USEPA Region 2 - Lead Agency

USACE, Kansas City District - Mission Contractor

Malcolm Pirnie, Inc. - Prime Consultant

Earth Tech / TAMS

Don Hayes, PhD, PE, University of Utah

Project Leaders

Ed Garvey, PhD, PG - Resuspension

Neven Kresic, PhD, PHG - Residuals

John Mulligan, PE - Productivity

Don Hayes, PhD, PE - Technical Consultant

Quality Review Team

- Ken Goldstein, CGWP (contaminant fate & transport, geostatistics)
- Michael Palermo, PhD, PE (remediation of contaminated sediments, management of dredged materials)
- Jon Butcher, PhD, PH (modeling, PCB chemistry, geostatistics)
- Greg Hartman, PE (dredging implementation)
- Bill Stasiuk, PhD, PE (water supply, human health)

Four Volumes

Part 1 Resuspension Standard - Vol. 1

Part 2 Residuals Standard - Vol. 2

Part 3 Productivity Standard - Vol. 3

Appendix Case Studies - Vol. 4

Document Organization

- Executive Summary
- Introduction
- Statement of the Standard
- Technical Basis of the Standard
- Implementation of the Standard
- 4. Plan for Refining the Standard
- 5. References
- Tables, Figures, Attachments

CD-ROM

- Standards Document Peer Review Copy
- Charge to Peer Reviewers
- Background Documents
 - Public Comment Letters and EPA Responses
 - Charge Questions Suggested by the Public
 - ROD
 - Selected White Papers from the Responsiveness Summary

Conclusions

- Action levels set by Resuspension Standard are protective
- Residual of ~1mg/kg Tri+ PCBs is achievable
- Dredging can be completed in six years while achieving Resuspension and Residuals Standards
- Standards work together to provide a flexible framework for environmentally sound dredging